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Abstract: Monte Carlo statistical thermodynamic computer simulations of liquid water at 25 0C based on potential functions 
representative of ab initio Hartree-Fock and configuration interaction calculations of the water-water pairwise interaction 
energy are reported. The results are analyzed in terms of quasi-component distribution functions for coordination number K 
and binding energy. The various ad hoc models for the structure of water are considered on this basis. The ratio of low density 
(K < 4) to high density species in the statistical state of the system is found to be 70/30. The quasi-component distribution 
functions imply a generalized continuum model for the system, with a composite of 3-, 4-, 5-, and 6-coordinate species giving 
rise to a unimodal distribution of binding energies. The effect of electron correlation on the structure of water is considered in 
terms of difference quasi-component distribution functions, and found to increase the mole fraction of four-coordinate species 
at the expense of both lower and higher coordinate quasi-components. 

I. Introduction 
The extensive use of liquid water as a solvent in chemical 

systems, the ubiquity of liquid water on the planet earth, and 
the unique role of water as a biological life support system 
combine to make the structure of liquid water a matter of 
central importance to chemistry, biochemistry, and molecular 
biology. With the advent of third generation digital computer 
hardware, research problems in molecular liquids previously 
approached by modelistic methods in statistical mechanics 
have become accessible to solution by computer simulation. 
The best calculated results on observable properties of liquid 
water are in quite good accord with experiment1 and an anal­
ysis of the structure of water based on computer simulation is 
now in order. The simulation methods also afford the possibility 
of carrying out computer experiments on the system to eluci­
date the effect of various defined characteristics on the struc­
ture of the system 

We present herein a theoretical analysis of the equilibrium, 
diffusionally averaged structure of liquid water at 25 0C based 
on a Monte Carlo statistical thermodynamic computer simu­
lation of the system. The calculations are based on pairwise 
additive analytical potential functions representative of ab 
initio quantum mechanical calculations of the interaction 
energy of water dimer.2-3 The analysis of the structure is car­
ried out in terms of quasi-component distribution functions.4 

A comparison of results based on potential functions derived 
from calculations at the Hartree-Fock level and from calcu­
lations including configuration interaction permit a determi­
nation of the effect of electron correlation on the structure of 
water. 

The background for this project is reviewed in section II, 
followed in section III by a description of the theory and 
methodology relevant to the calculations performed. The re­
sults are presented in section IV and discussed in detail in 
section V. A summary of the results and discussion is given in 
section VI. 

II. Background 
Early thoughts about the structure of liquid water developed 

as variations of ideas on the structure of ice. The conception 
of the structure of water as a quasi-solution of ice in equilib­
rium with a truly fluid polymorph can be traced at least as far 
back as Roentgen5 in 1892. Modern quantitative treatments 
of the problem date from the classic paper of Bernal and 
Fowler6 in 1933, featuring an icelike component consisting of 
a network of tetrahedrally coordinated water molecules. The 
theoretical development of the subject from that point can be 

developed in terms of essentially ad hoc and ab initio ap­
proaches to the problem. 

The ad hoc approach involves a statistical thermodynamic 
treatment of a viable model for the entire system, with dis­
posable parameters chosen empirically or for optimum 
agreement between calculated and experimentally observed 
values for selected properties. Representative examples of ad 
hoc models for liquid water are the interstitial models devel­
oped by Samoilov,7 Mikhailov,8 and Narten, Danford, and 
Levy,9 the clathrate model due to Pauling10 and Frank and 
Quist,11 the two-state mixture model described by Davis and 
Litovitz,12 the three-state model of Vand and Senior,13 the 
flickering cluster model due to Frank and Wen and Hagler, 
Nemethy, and Scheraga,14 and the significant structure ap­
proach by Jhon, Grosh, Ree, and Eyring.15 Alternatively, the 
structure of water has been viewed as a continuous distribution 
of structures as proposed by Pople,16 and elaborated into the 
continuum model for the system.17 

The ab initio methods take as a point of departure the 
many-body problem in classical statistical mechanics or clas­
sical kinetic theory and treat the system as a molecular as­
sembly interacting via a configurational potential. In statistical 
mechanics one proceeds to calculate properties of the system 
by configurational averaging based on the Monte Carlo 
method, whereas in the kinetic approach, molecular dynamics, 
the individual molecular trajectories are calculated by simul­
taneous solution of the Newton-Euler equations. Both Monte 
Carlo and molecular dynamics calculations are relatively large 
problems for a digital computer, and are collectively referred 
to as computer simulations of the system.18 Other ab initio 
approaches to liquid structure besides computer simulation are 
the integral equation methods such as that of Percus and 
Yevick19 and the perturbation theory of liquids due to Barker 
and Henderson.20 There remain significant assumptions in the 
ab initio approach to molecular liquids since the configura­
tional potential for the system is not known exactly to high 
order, but the assumptions enter at a lower point in the theo­
retical hierarchy than in ad hoc methods. 

All of the early theoretical work on the structure of water 
was based on ad hoc methods, and much of our current 
thinking about the structural chemistry of molecular liquids 
developed from these studies. The fundamental idea that the 
anomalous behavior of liquid water as compared with normal 
liquids in the behavior of density and compressibility with re­
spect to temperature was due to contributions from a low 
density four-coordinate icelike structure with anomalously low 
energy was well established in the early work. Detailed reviews 
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of ad hoc models are available in the monographs of Eisenberg 
and Kauzmann,21 Ben-Nairn,4 and the review articles by Davis 
and Jarzynski22 and by Hagler, Nemethy, and Scheraga14 on 
mixture models and KeIl17 on continuum models. Interesting 
additional perspective on the problem is due to Kamb,22 Ste­
venson,23 and Frank.24 Extensive experimental data are 
available on the system, but the collected results have been 
unable to differentiate unequivocally between mixture models 
and continuum models or among the various mixture models. 
The experimental evidence for mixture models based on vi­
brational spectra has been given particularly by Walrafen,25 

and the arguments from diverse viewpoints are given in ref 17 
and 22. 

A considerable literature exists on computer simulation of 
model fluids, but the application of computer simulation 
techniques to molecular liquids is at relatively early stage of 
development at present.26 The predominant number of pub­
lished studies deal with liquid water,26"28 with simulations on 
other pure liquids and some solutions just now appearing.29 The 
original molecular dynamics on liquid water study is due to 
Rahman and Stillinger27 and incorporates the Ben-Naim-
Stillinger (BNS) potential.30 The first Monte Carlo simula­
tions on liquid water were reported by Watts and Barker,283 

and Sarkisov et al.28b based on empirical potentials.30'31 

Concurrently an important series of papers on analytical 
potential functions representative of ab initio quantum me­
chanical calculation of pairwise interaction energies by 
Clementi and co-workers have appeared. Potentials for the 
water-water interaction were reported at the level of Har-
tree-Fock (HF) molecular orbital theory2 and with a number 
of alternative corrections for electron correlation,32 the best 
quality function being representative of moderately large 
configuration interaction (CI) calculations on the water 
dimer.3 Each of these potentials was incorporated in Monte 
Carlo computer simulations and calculations on a wide variety 
of molecular properties of liquid water were reported. The 
Hartree-Fock potential produced an oxygen-oxygen radial 
distribution function with serious discrepancies between cal­
culated and observed values beyond the first hydration shell.32 

The CI potential with only intermolecular correlation cor­
rections included gave results for the oxygen-oxygen radial 
distribution reasonably close to the observed values for the 
entire range of interparticle separations,1 and is currently 
considered the best available pairwise potential function for 
the water-water interaction. 

A satisfactory quantitative agreement between experi­
mentally observed radial distribution functions and corre­
sponding quantities calculated for liquid water in computer 
simulation incorporating the CI potential having been dem­
onstrated, it is of interest to analyze the results of the simula­
tion with a view toward obtaining an ab initio theoretical idea 
of the nature of the structure of liquid water. Moreover, the 
availability of both the CI and the HF potential functions 
permits a comparison of results obtained with and without 
electron correlation and a study of the effect of electron cor­
relation on the structure of liquid water. 

III. Theory 

Motional freedom of molecules in liquids mandates theo­
retical studies in this area to be problems in statistical me­
chanics. The theoretical description of the system follows from 
the partially classical partition function4'26 

Q(T, KN) 

appropriate for N particles in volume V at temperature T, the 
canonical (T,V,N) ensemble. Here q is the internal partition 

function and A is the one-dimensional translational partition 
function for a single particle. The integration ranges over all 
configurational coordinates X" of the N particles of the sys­
tem, 

X " = | X 1 ( X2, X3,. (2) 

where X, represents the configurational coordinates of the ith 
particle consisting of a specification of position R,- and orien­
tation fl,-, X/ = (R1-, fi,-). The quantity L(X") is the configu­
rational energy of the system, with (3 representing (kT)~K The 
multiple integration in eq 1 is referred to as configurational 
averaging. 

Monte Carlo computer simulations focus on the determi­
nation of average properties of the system such as configura­
tional internal energy U, 

U=S-- S E(XN)P(XN)dX1' (3) 

where P(X") dXN is the probability of finding the system in 
configuration X", 

P(X") = 
exp[-/3L(X")j 

(4) 
S ... J-exp[-/3L(X")]dX" 

Expressions for other average properties of the system such as 
distribution functions can be formulated in a manner analogous 
to eq 3. Computer simulation in the Monte Carlo sense is the 
numerical integration of eq 3 

M 
U=M~{ Y. L(X")P(X,") (5) 

/=i 

with the M configurations X,-" generated at random. In 
practice the numerical process represented by eq 5 is known 
to be very slowly convergent. An expedient suggested by Me­
tropolis et al.33 involves carrying out the calculation by means 
of a stochastic walk through configuration space, selecting 
points XjN which enter the averaging process with a frequency 
P(XjN). The determination of average quantities reduces to 
a simple summation, viz. 

M 

U=M-1Z E(Xj") (6) 

where the configurations X7-" are chosen by the Metropolis 
method. This process converges in 500K steps for most ho­
mogeneous systems of 0(100) particles. The iV-particle system 
is given a condensed phase environment by the appropriate 
choice of T and V and the use of image cells, i.e., periodic 
boundary conditions.34 

The principal numerical results of Monte Carlo computer 
simulation are the thermodynamic indices of the system such 
as internal energy and heat capacity. (The Metropolis method 
can be extended to produce quantities such as free energy (and 
thus entropy) by the use of auxiliary potential functions and 
conditional probabilities.) The spatial pair correlation function 
for the system follows from an integration over positional 
coordinates R" of the TV-particle system, 

*(R,.R2) = p~2S... SP(RN) Z L HL1(R") 

- R 1 ] 5[L,(R") - R 2 J d R " (7) 

where p is number density, L1-(R") gives the position vector 
of particle / in configuration R", and the bracketed quantities 
under the double summation are Dirac 5 counting functions4 

for the number of particles within dRi of Ri jointly with par­
ticles within dR2 of R2. In numerical calculations the corre­
sponding radial distribution function is obtained with R = |R2 
- R i | as 

g(R)~ 
N(R) 

P4TTR2AR 
(8) 
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where N(R) is the average number of particles in a spherical 
shell of width AR at a radial distance R from another particle; 
the function g(R) gives the configurationally averaged de­
viation of the local microscopic environment of a particle from 
the value characteristic of bulk density. Experimental values 
of g(R) for liquids are obtained from an analysis of the results 
of x-ray and neutron diffraction experiments.9 The average 
coordination number can be determined from g(R) as the 
average number of particles within a sphere of a given radius 
RM, 

Nc = P CRM g(R)4irR2 dR (9) 

The parameter /?M can be chosen as the radial value of the first 
minimum in g(R) to correspond to common chemical concepts 
of coordination number. 

A microscopic theoretical analysis of the system can be 
generated in terms of quasi-component distribution functions4 

(QCDF). QCDF with respect to coordination number and 
binding energy are the principal means of analysis of the 
computer simulation results in this investigation. The QCDF 
for coordination number A'c(1)(/0 gives the average number 
of particles in the system with coordination number K. The 
mole fraction of such particles is given by 

AC(K) — 

= ~ J ... S P(R") Y. S[G(R") - K] dR" (10) 
A / 

where 2,-<5[C,(R'v) — AT] is a Dirac 5 counting function for the 
number of particles with coordination number K in configu­
ration R". The quantity Xc(K) can be viewed as a component 
of the vector 

xc(/0 = |x c(0) ,xc(l) ,xc(2), . . . i ( 1 1 ) 

the elements of which define the entire composition of the 
system in terms of coordination number. The average coordi­
nation number of eq 9 in terms of Xc(K) is 

Nc= t Kxc(K) (12) 
K=O 

The QCDF with respect to the binding energy B, for particle 
/ follows from the definition 

B1 = E(Xi X/-1, X/, X,-+i X,v) 
-E(Xi)..., X1-U X,+ 1 X„v) (13) 

The mole fraction of particles with binding energy between v 
and v + dv is given by 

, B W = ^ l M = i f . . . f p(X.V) 
A' A' 

X £ 5[A1-(X")-„]dX<v (14) 
i 

where 5[B1(X") — v] is a Dirac <5 counting function for parti­
cles with binding energy between v and v + di>. The vector 

XB = U'BU'O), *B("I ) . XBM, • • -\ ( I 5) 

defines the composition of the entire system as a function of 
configurationally averaged binding energy for individual 
particles. The relationship between x%(v) and configurational 
internal energy is 

u=i xr"*B(")d" (i6) 

Note that xc(K) is a discrete function in K whereas XB(C) is 
a continuous function in v. It is expected that the various 

quasi-components of a mixture model would be distinguished 
by separate maxima in a plot of XB(") VS. V. 

Finally the analysis of the system in terms of QCDF can be 
extended to display the distribution of binding energies as a 
function of coordination number, 

xB.c(»,K) = (STT2)-" J . . . J P(X") 

X E 5[B,(X") - ,] £ 5[C7(X") - K] dX" (17) 

and define a compositional vector as 

XB.C = {XB.C(I>,K)\ (18) 

Further characteristics of the system can be displayed in terms 
of QCDF formulated on the basis of considerations analogous 
to those defined above. 

The principal variables in a Monte Carlo computer simu­
lation are T, V, N, and the means of determining the config­
urational energy of the system E(X"). This quantity can be 
expressed as 

E(X") = E E12KXi. X1) 
/</ 

+ L E^(X1, Xj, X,) + . . . (19) 
i<j<k 

where E{n) are n-body contributions to the interaction. The 
conventional way to proceed in computer simulation is to ob­
tain a relatively simple algebraic expression for the E(n) and 
program this into the overall calculation. Most simulation work 
on molecular liquids has only considered the pairwise (n = 2) 
term with the others either neglected entirely or considered to 
be mapped onto an effective pairwise term in some averaged 
way. The analytical potential functions representative of 
quantum mechanical calculations are directly identified with 
£ (2) by definition. The effect of higher order terms has been 
studied especially for multiple water interactions by Hankins, 
Moskowitz, and Stillinger35 and Lenz and Scheraga;36 higher 
order effects can contribute errors in the interaction energy 
of the order of 10-15%. Still little is presently known of rea­
sonable analytical forms for higher order E{"\ although this 
problem is presently under consideration. All calculations in 
the study described herein assume pairwise additivity and this 
should be considered as a possible source of error in the re­
sults. 

IV. Calculations and Results 

Programs based on the theoretical development described 
in the preceding section were coded and implemented on the 
CUNY IBM 370/168 computer. Calculations were carried 
out on liquid water by means of a 125 particle simulation at 
25 0C and a volume commensurate with a density of 1 g/cm3 

as in the Rahman-Stillinger dynamical simulation.27 Step size 
in the stochastic walk in the Metropolis procedure was selected 
to produce an approximately 50% acceptance rate. All calcu­
lations were found to be well converged after 500K steps of the 
Monte Carlo process. 200K points having been initially dis­
carded. 

Two separate computer simulations are described, one based 
on the CI potential of Matsuoka, Clementi, and Yoshimine3 

and the other based on the HF potential of Popkie, Kisten-
macher, and Clementi.2 The difference between these functions 
is displayed for one representative slice of the potential energy 
hypersurface in Figure 1. Here the interaction energy for the 
linear water dimer is plotted as a function of the oxygen-
oxygen separation for the linear water dimer; this is the opti­
mum geometry for intermolecular hydrogen bonding.35 The 
HF potential has a minimum at 3.01 A and an intermolecular 
binding energy of —4.55 kcal/mol. The CI potential function 
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R 0 0 < A > ^ 

DKR-CI 

5.0 6.0 7.0 

R00 (a.u.) 

8.0 9.0 

Figure 1. Calculated pairwise interaction energy £(2) as a function of in-
teroxygen separation Roo for the linear configuration of the water dimer; 
adapted from Figure 6 of ref 3 and Figure 1 of ref 32. 

1.6 2.4 3.2 
T 1 1 1 1 1 
4.0 4.8 5.6 6.4 7.2 8.0 

R ( £ ) — 
Figure 2. A comparison of the experimentally observed radial distribution 
function for liquid water (solid line) with points on the radial distribution 
function calculated from a Monte Carlo computer simulation based on 
the HF potential. The experimental curve is redrawn from Figure 2 of ref 
1; experimental data are due to Narten, Danford, and Levy.9 

has a minimum at 2.92 A and an intermolecular binding energy 
of —5.62 kcal/mol. The CI potential function gives results 
parallel to and within 0.43 kcal/mol of the most extensive 
configuration calculation to date on the water dimer reported 
by Diercksen, Kraemer, and Roos,37 labeled "DKR-CI" in 
Figure 1. The effect of electron correlation on the pairwise 
interaction is to stabilize the energy by approximately 1 
kcal/mol (~19%) in the binding region and reduce the mini­
mum energy intermolecular separation by 0.09 A. 

The calculated radial distribution function for the computer 
simulation incorporating the HF potential is shown in com­
parison with the corresponding experimentally observed result 
in Figure 2. This reproduced Figure 10 of Kistenmacher, 
Popkie, Clementi, and Watts,32 and serves as a confirmation 
of our computer programs. Comparing the calculated and 
observed results, the HF potential as noted previously by 
Clementi and co-workers shows significant deviations from the 
experimentally determined function, with the first peak (first 
hydration shell) biased toward larger distances and the position 
of the second hydration shell well displaced from the observed 
values; in fact the HF potential produces a minimum in g(R) 
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Figure 3. Calculated quasi-component distribution function xc{K) vs. 
coordination number K based on the HF potential function. 

0.08 

-20 -17 -14 -Il -8 -5 

v ( kca I / m o l ) — — 

Figure 4. Calculated quasi-component distribution function XB'V) VS. 
binding energy v for liquid water based on the HF potential funcion. 

where the experimental values show a maximum. The calcu­
lated configurational internal energy is -6.9 kcal/mol with 
a standard deviation estimated at 0.03 kcal/mol.38 For com­
parison with experimentally observed internal energy this re­
quires addition of 3RT, the kinetic energy of free molecular 
and translation. This results in —5.12 kcal/mol as compared 
with the experimentally observed value of —8.1 kcal/mol. The 
discrepancy is attributed mainly to electron correlation, the 
assumption of pairwise additivity, and basis set truncation 
errors. The calculated heat capacity is 18 cal/deg mol, in 
(fortuitously) exact agreement with the experimental value 
at 25 0C. 

An analysis of the computer simulation based on the HF 
potential was carried out in terms of the QCDF for coordina­
tion number and binding energy. The structure of "HF water" 
in terms of coordination number is shown in Figure 3. Here the 
mole fraction XQ(K) based on /?M = 3.3 is plotted vs. K in 
histogram form. The predominant coordination number is K 
= 4, coming in at 37%. The distribution is markedly symmetric 
about K = A with K — 3 and K = 5 represented to the extent 
of 23% and K = 2 and K = 6 at about 7%. Approximately 2% 
of the molecules have a coordination of 7 in the equilibrium 
statistical state of the system. The average coordination 
number is 4.05 compared with an experimental value of 4.4. 

The structure of HF water in terms of binding energy is 
shown in Figure 4. Here the mole fraction x&(v) is displayed 
as a function of v. We find a continuous distribution of binding 
energies in the system essentially symmetric about —12 
kcal/mol. In Figure 5 the distribution of particles as a function 
of both coordination number and binding energy, XB,C(",^0 
vs. v and K, is presented. The curves for each value of K in 
Figure 5 are individually normalized and must be multiplied 
by Xc(K) to assess their respective contributions to the sta­
tistical state of the system. The XQ(K) histogram is displayed 
along the K axis of the figure to facilitate comprehension of 
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Figure 5. Calculated quasi-component distribution function *B,C(".^0 VS. 
binding energy c and coordination number K for liquid water based on the 
HF potential function. Each curve is normalized by Xc(K) and must be 
weighted by this quantity to assess its relative contribution to the statistical 
state of the system. To aid in the comprehension of this plot, Xc(K) from 

Figure 3 is plotted along the K axis. 

Figure 6. A comparison of the experimentally observed radial distribution 
function for the liquid water (solid line) with points on the radial distri­
bution function calculated from a Monte Carlo computer simulation based 
on the CI potential. See Figure 2 for notation on the experimental 
data. 

the plots. Considering first the behavior of XB,c(f,A") vs. v, each 
of the distributions are individually continuous and essentially 
symmetric about a single maximum value. The behavior of 
XB,C(V,K) vs. K shows a single minimum at K = 4, the most 
predominant coordination number in the system. The binding 
energies for K > 4 are lower in energy than those for K < 4. 

The calculated and observed oxygen-oxygen radial distri­
bution function from the computer simulation of liquid water 
incorporating the CI potential is shown in Figure 6; cf. Figure 
2a of ref 1. There is quite good accord between calculated and 
observed values for the position of all three main peaks. In the 
region of the first hydration shell the shape of the calculated 
peak agrees well with experiment, although the calculated 
maximum is slightly too high. For the second hydration shell 
the calculated position of the maximum in g(R) is in close 
accord with experiment, but the shape is biased toward short 
distances. The small peak or shoulder at ca. 3.5 A, much dis­
cussed by previous investigators, is clearly evident in the cal­
culated g{R). The third shell appears generally well accom­
modated. As noted by Lie et al., overall the results are in sat­
isfactory accord with experiment and as good as or better than 
corresponding results based on any of the available empirical 
potential functions. The calculated internal energy, corrected 

0 .8 

1 0.6 

2 0.4 

* 0.2 

0 
0 4 8 

K 
Figure 7. Calculated quasi-component distribution function xc{K) vs. 
coordination number K for liquid water based on the CI potential func­
tion. 

0.08 r 

- 2 2 - 1 9 -16 

v ( k ca 1 /mo! ) 

- I 3 

Figure 8. Calculated quasi-component distribution function xS:C(v,K) 
binding energy v for liquid water based on the CI potential function. 

for kinetic energy as discussed above, is —6.8 kcal/mol, some 
16% above the experimentally observed value. The calculated 
standard deviation on internal energy is 0.03 kcal/mol.38 This 
discrepancy is attributed primarily to the assumption of pair-
wise additivity in the potential function, and appears to be of 
the order of magnitude expected for this effect. The calculated 
heat capacity is 17.9 cal/mol deg. 

The analyses of the computer simulation of liquid water 
based on the CI potential in terms of QCDFs are displayed in 
Figures 7, 8, and 9. The calculated structure of water in terms 
of coordination number for Rm = 3.3 is shown in Figure 7. The 
predominant coordination number is K = 4 at 47%. The dis­
tribution of coordination numbers in the system is biased 
towards values of K = 4, with K = 5 at 24% and K = 6 at 6% 
compared with K = 3 at 19% and K = 2 at 4%. The calculated 
average coordination number is 4.15. 

The calculated structure of water in terms of binding energy 
is shown in Figure 8. There is a major maximum in the plot at 
— 17.7 kcal/mol, a relatively symmetric distribution of binding 
energies about this value, and a slight but clearly discernible 
bias in the distribution toward lower binding energies. There 
is evidence of some structure in the curve, but overall the cal­
culated distribution is continuous. 

The calculated distribution of water molecules as a function 
of both binding energy and coordination number is shown in 
Figure 9. Considering XB,C(^,K) VS. V, each of the curves is 
individually continuous about a single maximum value. The 
behavior of xB,c(",^Q vs- K shows a single minimum at K = 
4. The binding energy curves for K > 4 are displaced toward 
lower energies relative to those for K < 4. The XB,C(V<K) dis­
tribution for K = 4 is biased toward low binding energies 
whereas the distributions of K ^ 4 are (slightly) biased toward 
higher binding energies. The anomalously low binding energy 
of the four-coordinate quasi-component is clearly evident in 
Figure 9. 
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v ( kcal /mol) —•-
Figure 9. Calculated quasi-component distribution function XB.O.K) VS' 
binding energy v and coordination number K for liquid water based on the 
CI potential function. Each curve is normalized by xc(K) and must be 
weighted by this quantity to assess its relative contribution to the statistical 
state of the system. To aid in the comprehension of this plot, xc(K) from 
Figure 7 is plotted along the K axis. 

The analysis described above must be considered in per­
spective of the calculated error bounds on each quantity. A 
detailed error analysis based on the procedure described by 
Wood38 was carried out on the g(R) and Xc(K) determined 
for the CI function. The standard deviation on g{R) was found 
to be a maximum of 0.037 in the region of the first hydration 
shell and typically of the order of 0.01-0.02 elsewhere. The 
standard deviation in Xc(K) was at its maximum for K = 4, 
a value of 0.007. Similar statistics are implied for the HF re­
sults. 

V. Discussion 

Since the Monte Carlo simulation of liquid water incorpo­
rating the CI potential produces a radial distribution function 
in close accord with experiment, we can look to the analysis of 
this calculation (Figures 7, 8, and 9) for a theoretical view of 
the structure of water. Considering first the idea of low density 
and high density contributions to water structure, the analysis 
of the results in terms of Xc(A") in Figure 7 allows these con­
tributions to be quantified. The mole fraction of low density 
component X]_ is 

XL= Z xc(K) = 0.70 (20) 
K = O 

and the mole fraction of high density component XH is 

XH= E xc(K) = 0.30 
A>5 

(21) 

for the statistical state of the system at 25 0 C. 
The predominant quasi-component with respect to coordi­

nation number at K = 4 in Figure 7 can be identified as part 
of the low density component considered in the ad hoc models. 
For an icelike structure we expect four hydrogen bonds per 
molecule at -5 .62 kcal/mol each; a binding energy of —23 
kcal/mol is near the lower limit of the XB,C("A) curve in Figure 
9. Note that binding energy as defined in eq 13 includes con­
tributions not just from the first hydration shell but from the 
entire assembly; thus the minimum energy in this plot is <—23 
kcal/mol. The fact that the maximum in XB,C(",4) falls at 
>—23 kcal/mol indicates that slightly distorted hydrogen 
bonds or other bound structures play a significant role in the 
system. 

One can look to the plot ofxs(v) in Figure 8 for information 
on the relative viability of mixture models as opposed to con­
tinuum models. According to the calculations on model sys­
tems,4 the presence of distinct quasi-components of a mixture 
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Figure 10. Calculated difference quasi-component distribution function 
X c W for liquid water; Xc(A") for the CI potential function minus xcCO 
for the HF potential function. 
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Figure 11. Calculated difference quasi-component distribution function 
XBW for liquid water; XB(") for the CI potential function minus xB(c) for 
the HF potential function. 

model should be indicated by structure in the X B W curve, with 
a separate distinct peak for each component, whereas a con­
tinuum model would be represented by a continuous distri­
bution of individual binding energies. The results in Figure 8 
favor the latter alternative; similar conclusions emerged from 
molecular dynamics. 27This result should be considered in the 
perspective of the assumption of pairwise additivity in the 
configurational energy, since the formation of certain types 
of quasi-components may depend on cooperative effects. 

The effect of electron correlation on the calculated structure 
of liquid water can be determined by comparing the results 
based on the HF potential function (Figures 2-5) with those 
obtained from the CI potential function (Figures 6-9). Com­
paring the results on radial distribution function obtained from 
the HF potential function (Figure 2) and the CI potential 
function (Figure 6), the inclusion of electron correlation is 
found to bring the calculated g(R) into close accord with ex­
periment. As noted at the opening of the preceding section, 
electron correlation increases the binding energy and decreases 
the intermolecular separation in the water dimer, and it is of 
interest to inquire as to how these effects operate in bringing 
about improved agreement with experiment. Matsouka et al. 
in considering potential functions representative of CI calcu­
lations on the water dimer reported another analytical potential 
function for the system which displayed essentially the corre­
lation effect on binding energy but not on geometry. We have 
carried out an additional simulation based on this potential and 
find the results on g(R) to be very close to that obtained using 
the HF potential function given in Figure 2. Therefore the 
correlation effect on geometry as well as energy is essential for 
obtaining agreement between calculated and observed radial 
distribution functions. 

The effect of electron correlation on the calculated structure 
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of liquid water can be quantified in terms of both coordination 
number and binding energy. This is most directly displayed in 
terms of difference (A) QCDFs, 

Axc(K) = *c(K)c l " xc(K)Hf (22) 

lxc(v) = xc(v)ci ~ xc(f)
Hf (23) 

The A QCDF for coordination number is shown in Figure 10. 
Correlation effects are seen to increase the percentage of 
four-coordinate species at the expense of low density K = 2 and 
K = 3 and the higher density K = 6 quasi-component. The A 
QCDF for binding energy is shown in Figure 11 and displays 
essentially a simple displacement of the binding energy curve 
toward lower values. Thus the effect of electron correlation on 
the calculated structure of liquid water is to increase the 
four-coordinate structure of the system by 10% and decrease 
the average binding of a water molecule in the liquid by about 
6 kcal/mol. 

VI. Summary and Conclusions 

The analysis of results of Monte Carlo computer simulations 
on liquid water at 25 0C which are in satisfactory accord with 
experimentally observed thermodynamic properties and radial 
distribution functions quantifies the distribution of coordina­
tion number and binding energies in the system. The pre­
dominance of four-coordinate quasi-components in the dif-
fusionally averaged structure of the system is confirmed, and 
a 70/30 ratio of low density to high density components is in­
dicated. Analysis of the results in forms of the distribution of 
binding energies favors the idea of a continuous distribution 
of structures rather than a mixture model of liquid water, and 
included in the continuum of structures are contributions from 
3-, 5-, and 6-coordinate species as well as the 4-coordinate 
component of "Pople water". The use of quasi-component 
distribution functions is seen to be a powerful means for the 
analysis of the structural chemistry of the statistical state of 
a molecular liquid. 

The effect of electron correlation on the structure of water, 
obtained by comparing results based on a configuration in­
teraction intermolecular potential function with those obtained 
from a Hartree-Fock intermolecular potential function, is to 
increase the four-coordinate structure of the system. The 
successful use of difference quasi-component distribution 
functions to quantify this effect suggests analogous use of this 
approach to quantify the effect of solutes on solvent structure. 
Such work is presently in progress in this laboratory. 
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